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This paper presents a new numerical method for solving the incompressible, un-
steady Navier-Stokes equations in vorticity—velocity formulation. The method is
applicable to spatial simulations of transitional and turbulent boundary layer flows.
Itis based on a compact-difference discretization of the streamwise and wall-normal
derivatives in Cartesian coordinates. A Fourier collocation approach is used for the
spanwise derivatives. Important new features of the numerical method are the use
of nonequidistant differences in the wall-normal direction; the use of split-compact
differences in the streamwise direction; a new, fast iteration for a semi-implicit time
integration of the wall-normal diffusion terms; and an improvement of the buffer
domain technique to prevent reflections of waves at the outflow boundary. Results
of test calculations are presented to verify the improvements obtained by the use of
these new techniques 2000 Academic Press

1. INTRODUCTION

The principal difficulty in obtaining numerical solutions to the incompressible Navie
Stokes equations is the fact that there is no evolution equation for the presRather, the
pressure serves as an instantaneous correction to the evolution equations for the vel
such that the continuity equation (zero divergence of the velocity) is satisfied everyw
in the flow field.

There are several distinct approaches to overcoming this difficulty. The first appr
is known as the artificial compressibility method [5]. It uses an artificial compressibi
parameted to couple the divergence of the velocity to a change of the pressure in pse
time 7, thus turning the continuity equation into an evolution equation for the press
Typically, the solution procedure consists of integrating this system of hyperbolic equa
in pseudotime until the divergence of the velocity has been reduced to the desired acc
The chief difficulty here lies in devising an iteration scheme that converges reasor
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372 MEITZ AND FASEL

quickly without requiring excessive amounts of memory [25, 29]. Although this approa
can be used to compute truly unsteady flows, it has mostly been applied to compute ste
incompressible, turbulent (i.e., Reynolds-averaged) flows over complicated geometrie:

The second approach is known as the pressure correction or fractional step methoc
Over the past 10 years, this approach has become by far the most popular numerical me
for the solution of the incompressible Navier—Stokes equations. In this scheme, the inte
tion over one timestep is split into a predictor step for the intermediate velocity that onr
the pressure, a Poisson equation for a pressure-like quantity, and a final corrector step f
velocity to enforce conservation of mass. The details of the method vary between diffel
implementations. Typically, the diffusion terms (at least in the wall-normal direction, s:
y) are integrated with an implicit scheme for numerical stability, while the nonlinear terr
are integrated with an explicit scheme for efficiency. A major difficulty with fractional ste
methods is the specification of wall boundary conditions at the intermediate steps. Usu
ad hoc wall boundary conditions are derived by extrapolation of the velocities and pres:s
gradients from previous timesteps. While such an extrapolation is sufficient for numeri
stability, it introduces large splitting errors into the integration scheme [24]. This sign
icantly reduces the timestep necessary for numerical accuracy, canceling a good pa
the advantage gained from the switch to an implicit time integration method. It is possil
to construct schemes that overcome this problem and actually use the correct boun
conditions [14]. While these schemes avoid the large splitting errors of the conventio
fractional step methods, they are very memory intensive [17, 21].

The third approach avoids the calculation of the pressure altogether by taking the cul
the momentum equations. This results in a set of evolution equations for the vast{tits
curl of the velocity). These evolution equations are augmented by a set of elliptic equati
relating the vorticity either to the velocities or to a stream functior key advantage of the
vorticity formulation is that, if properly implemented, the wall vorticity can be calculate
with the full spatial and temporal accuracy of the numerical scheme. This is in contr
to the fractional step method, where the numerical accuracy can be substantially redt
near the wall [13]. In many applications, the wall vorticity is a paramount quantity th
is essential for capturing the physics of viscous flows. In these cases, a vorticity met
would allow for higher numerical accuracy with a given spatial and temporal discretizatic
Alternatively, it would allow a reduction of the number of gridpoints and timesteps to obta
the desired accuracy.

Vorticity methods are particularly attractive in two dimensions, where the number
variables can be reduced fromthraey, p)totwo (w, ¥). Inthree dimensions, however, the
number of variables actually increases, from faury(, w, p) to six [(wx, wy, w2, U, v, w)
or (wx, wy, wz, Yy, Yy, ¥z)]. Another important drawback of the vorticity formulation is
that there are no boundary conditions for the vorticity on a solid wall. This is inconsequen
for flows without solid boundaries (e.g., jets, wakes, free shear layers). It can be, howev:
serious impediment for calculations of boundary layer flows. One way around this proble
at least for simple geometries, is to use a fully explicit method for the time integration. Tl
introduces another potential drawback in flows that require a very fine resolution in the w
normal direction, namely, a severe restriction of the timestep due to numerical instabil
For calculations of turbulent boundary layers, when the necessary spatial resolution nea
wall becomes very fine, the timestep limit due to numerical stability may be substantic
smaller than the timestep necessary for numerical accuracy. In these cases, an im
scheme would be more desirable. Recent higher-order accurate finite difference sche
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for the vorticity formulation are given in [10] for implicit time integration, [15] for explicit
time integration, and [7-9] for compact differences.

The first researcher to successfully use the vorticity—velocity approach was Fasel
references see [10]). He investigated the early (two-dimensional) stages of boundary
transition. His method was second-order accurate in space and time, using finite differe
for the spatial derivatives and a fully implicit scheme for the time integration. The result
difference equations were solved with a direct method in the wall-noyhdirection, with
iteration in the streamwise] direction. This scheme coupled the implicit integration ©
the vorticity transport equation with the calculation of the velocities. The iteration loop
the difference equations was combined with the iterative calculation of the wall vortic
At the outflow boundary, a radiation condition was imposed on the second derivative
of all variables. This condition allowed waves with one specified streamwise wavenun
to pass through the outflow boundary without severe reflections.

The basic numerical method was extended to three dimensions in [10] to investigat
later stages of transition in a flat-plate boundary layer. The numerical scheme of [10] t
fourth-order accurate finite differencesxrandy and Fourier collocation in the spanwise
directionz. The time integration was still carried out by a fully implicit scheme, with th
radiation condition atthe outflow boundary. In later studies, the implicit scheme was replz
by a fully explicit scheme, and a buffer domain was introduced to suppress disturbal
before they could reach the outflow boundary [15].

The principal application of the current method is the direct numerical simulation
transition and turbulence in wall-bounded shear flows. While the fundamental equat
are unchanged from those of [15], several new numerical techniques have been introc
that lead to substantial improvement of accuracy and speed. These techniques in
nonequidistant differences in the wall-normal direction; split-compact differences in
streamwise direction; a new, fast iteration for a semi-implicit time integration of the we
normal diffusion terms; and an improvement of the buffer domain technique to prev
reflections of waves at the outflow boundary.

In Section 2, the governing equations are presented. In Section 3, the numerical
is described in detail, including analyses of the new techniques listed above. In Sectit
results of several test calculations are presented to demonstrate the accuracy and conve
of the numerical method.

2. GOVERNING EQUATIONS

The governing equations are the incompressible, unsteady Navier—Stokes equation:
constant density and viscosity. They consist of three momentum equations for the ve
ity componentsu, v, w in the streamwisex), normal §), and spanwisezj directions,
respectively,

ol 1
— =—({U-V)U+Vp+ — V2, 1
T u-vyu+ p+Re 1)

and the continuity equation (conservation of mass)

V.li=0. 2

In these equations, the velocities are normalized by the free-stream vélgcifyhe spatial
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variablesx, y, z are normalized by a reference lendthand the time is normalized by
U, /L. The global Reynolds number is defined as-Ré.,L /v.
We define the vorticity a& = —V x i (i.e., the negative curl of the velocity),

v Jw Jw du ou  dv
Wy = — — —, Wy = ——— T, w; = — — —. 3)
9z ay X 9z ay  9x
Taking the curl of the momentum equations (1) eliminates the pressure gradient. Using
fact that both the velocity and the vorticity vectors are solenoidal, one obtains three vortic
transport equations for the streamwigg ), normal y), and spanwisex;) components
of the vorticity:

dwx Ja dc 1

SR A v 4a
at ay Tz T Re (4a)
do, 9a b 1 _,
oy 2 T, ~y 4b
ot _ax o9z Re’ (4b)
do, oc b 1 _,

=TT 2 V2, 4c
ot ~ ox oy Re (4c)

The nonlinear terms resulting from convection and vortex stretching are

a=voyx—Uwy (5a)
b=wwy—vo, (5b)
C=Uw; — wwy. (5¢)

This formulation of the nonlinear terms follows the approach taken in [10]. It has t
advantage of minimizing the number of Fourier transforms required for a pseudospec
computation of these terms.

From the definition of the vorticity, and again using the fact that both the velocity and t
vorticity vectors are solenoidal, one obtains three equations for the velocity componen

d ad
v2y = J%x _ 0%z (6a)
dZ ax
Pw  dw dw 9%v
ot = oy (6b)
aX 0z ax ayoz
d%u 9% dw 3%v
— et =—— - . (6c)
ax2 = 9z2 9z  9xay

When used together with an appropriate finite-difference discretization »f theeriva-
tives (see Section 3), this formulation of the velocity equations does not require the vortic
valueswy, w, at the wall for the calculation of the right-hand sides of Eqgs. (6a)—(6c). Tt
calculation of the wall vorticity will be discussed in Section 3.1.

The flow is assumed to be periodic in the spanwise directiom the calculations
presented here, the flow is also taken to be symmetric w£0. Therefore, the flow field
is expanded in real Fourier cosine and sine series Midpanwise Fourier modes,

K

(U, v, @7, b,0) = > (Uk, Vk, 2k, Bk, Ci) COI%2) (7a)
k=0
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K

(w’ Wy, wy» a) = Z(Wk9 QXk? kas Ak) Sm(VkZ): (7b)
k=1

where the spanwise wavenumber is

: (8)

and 2, is the spanwise wavelength of the lowest spanwise Fourier mode. Substitutio
these expansions into the vorticity transport equations (4a), (4b), (4c) and the velc
equations (6a), (6b), (6¢) yields the governing equations in Fourier space

asaztxk _ 83Ayk Gt Rie V20 (9a)
P _ Ot B+ 2 vy (9b)
3;” = —83—% + 2—? + Rievﬁszzk (9c)
% + f—;k — Vi = NSk — a;?)(zk (10a)
% — YW = % + W% (10D)
L T— - ;’i\a’; (100)

where the Laplacian operat®¥ is transformed into

2 82 82 2
k:ﬁ_‘_a_yz_yk' (11)

The nonlinear termg\,, By, Ci of the vorticity transport equations are evaluated pse
dospectrally, using fast Fourier transforms [28] to convert from Fourier spage K) to
physical spacex; y, zZ) and back. To avoid aliasing errors, the valuea d, c in physical
space are calculated orfiZX spanwise collocation points [23].

3. NUMERICAL MODEL

3.1. Boundary Conditions

The governing equations (9a)—(10c) are solved inside a rectangular integration do
X0 < X < Xmax 0 < Y < Ymax With periodicity in the spanwise directianThe computational
domain is shown schematically in Fig. 1. The numerical method is used to simulate
tially developing, unsteady wall-bounded shear flows. Thus, fluid enters the computati
domain at the inflow boundary at= xg and exits at the outflow boundaryat Xmax.
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FIG. 1. Sketch of computational domain.

Inflow boundary conditions. At the inflow boundary ax = xo, all velocity and vorticity
components are specified. In addition,»aliierivatives needed for the compact-difference
approximations of the governing equations are also specified. Imposing derivatives at
boundaries may appear to be an overspecification of the problem. However, apart from ¢
walls and boundaries “at infinity,” any computational boundary is necessarily a cut throu
the physical flow field. Consequently, the numerical boundary conditions specified at s
a boundary should take into account the physics of the flow. The issue of proper bounc
conditions for computational fluid dynamics has been hotly debated among fluid mech
ics scholars, particularly in the context of simulations of transitional and turbulent flow
Bertolotti [4] argued that realizable boundary conditions for the Navier—Stokes equatic
should be a cut (e.g., at=xp) of a flow field that is itself a solution of the Navier—Stokes
equations. Morkovin [22] called for environmentally realizable disturbances, i.e., for bour
ary conditions that can be causally linked to disturbances that occur in nature. At the h
of the matter lies a discrepancy between boundary conditions that are permissible in
taining a mathematically well-posed problem and boundary conditions that are “physics
meaningful.” On the one hand, one may impose mathematically proper inflow bound
conditions that lead to a unique and numerically stable solution that cannot be physic
realized in any experiment. An example of this type of boundary condition are the infle
conditions specified in certain numerical simulations of transient growth of disturbance:
boundary layers [12]. On the other hand, if a flow is known to be a physically meaningful :
lution of the Navier—Stokes equation, then the derivatives of the relevant variables (veloc
vorticity) are also known. Thus, one could reasonably expect that the consistent speci
tion of additional derivatives at the boundaries should not cause numerical problems. A
example, the parabolized stability equations (PSE) require inflow boundary conditions 1
specify, in fact, the dependent variables and their first two streamwise derivatives [3].

There is yet another point to consider when a disturbance at the inflow boundary le
to a transient in the flowfield: If reflected at the outflow boundary, such a transient ¢
cause waves to be trapped inside the computational domain. At the very least, these w
will corrupt the solution for a long time; at worst, they might cause the numerical solutic
to grow without bounds. This underlines the need for a suitable damping region near
outflow boundary.

In the unsteady calculations presented in Section 4, the steady part of the flow at
inflow boundary is taken as the solution of the Blasius boundary layer equations; her
all derivatives are known and can be specified in a consistent manner. Moreover, since
calculations are usually started with the Blasius solution as the initial condition, the fl
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at the inflow boundary is also consistent with the initial flow field. In these calculatiol
time-harmonic Tollmien—Schlichting waves are specified at the inflow boundary. Si
these waves are valid solutions of the Navier—Stokes equations (or of some approj
approximation, such as PSE) all derivatives can be consistently specified. However, if
a periodic solution is suddently imposed as an inflow boundary condition for an otherv
steady Blasius boundary layer, there will be an initial transient adjustment of the flow, U
periodicity is attained. While this transient adjustment is a valid solution of the Navit
Stokes equation, it is unphysical, because it cannot be realized in an experiment. Thi
this case, only the periodic results, after the initial transient, can be considered physi
meaningful, since they can be reproduced in an experiment.

Wall boundary conditions. At the wall aty = 0, no-slip conditions are imposed &l
andW, while Vi can be arbitrarily specified to model suction or blowing through the wa
In addition to prescribind/, 9Vi/dy =0 is imposed at the wall to ensure conservation
mass. This follows from the continuity equation (2).

A crucial aspect of the vorticity—velocity formulation is the fact that there are no proy
boundary conditions for the vorticity; i.e., the vorticity values at the wall cannot be arbitrau
specified or computed from the vorticity transport equations (4a), (4b), (4c). Rather, 1
should be computed from the velocity fields to maintain consistency and ensure ov
conservation of mass and zero-divergence of the vorticity field. The following relations
used to evaluate the vorticity at the wgh= 0:

92k 2 82§Zyk Y TAVA 2
Tk 20 = — o T C T2y, 12a
axz yk xk 8X3y Yk axz + 8y2 yk k ( )
Q=0 (12b)
Q2 Vi | 9%V
8—)(2 = VkQXk — (W + 3—)/2 — )/k2Vk . (12C)

Equation (12a) is obtained by taking tlxederivative of the divergence of the vortic-
ity 3/0xV -@ and eliminating the spanwise vorticity component via thaerivative of
Eqg. (10a). Equation (12b) follows from the definition of the normal vorticity (3) togeth
with the no-slip boundary conditions for the velocities at the wall. Given the normal veloc
Vi and the normal vorticity2yy, their derivatives can be computed at the we# 0. The
streamwise vorticity2,k is then computed by solving Eq. (12a). Orieg is known,Q,«

is computed by integration of (12c), starting at the inflow boundary.

Free-stream boundary conditionsAt the free-stream boundary §t= ymax the flow is
assumed to be irrotational. This assumption is usually satisfied to machine precisic
numerical calculations. Thus, all vorticity components and their derivatives are set to z
A Robin boundary condition is specified for the disturbance velddity

aVk

| = —amVk. (13)

Ymax

This condition imposes exponential decdyx exp(—ayYy) of disturbances at the free
stream. In the case of a Tollmien—Schlichting (TS)-wave, this exponential decay follc
from linear stability theory, wherey, is the wavenumber of the TS-wave. For sufficiently
large ymax the solution is quite insensitive to the valueogf.
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Outflow boundary conditions.In Eq. (10c) for the streamwise velocity, a Neumann
boundary conditionis used based on the continuity equation (2) to ensure global conserv:
of mass:

— = —— — Wk 14)
In all other equations, the second derivativeg @re set to zero at the outflow boundary.

3.2. x-Derivatives

In the streamwise directioxthe grid points are equally spaced from 1 at the inflow
atx =Xg toi =ml at the outflow ak = Xmnax. Hencex(i) =xg + (i — 1) AX. Inside, from
i=2toi =ml-1, all x-derivatives are approximated with fourth-order compact differ
ences, except for the derivative of the nonlinear terms, as discussed below.

x-Derivatives of nonlinear terms.The streamwise derivativeésA,/dx anddCy/dX in
the vorticity transport equations (9b) and (9¢) are approximated by split compact differenc

1 / ’ !
6((2 — We) fifl +4fi + W¢ fi+1)

1
= ﬁ(—(5 = 2We) fi—1 + 41— wo) fi + (1 + 2we) fia)

4
x {—(1 — wc)iﬂmx)3 + W

180 9x°

1 9°f
36 x4 18096 20T } 49

1 ! / !
é(Wc o +41 +(@2—we) fi+1)
1
= 6A7X(_(1 +2we) fi1 — 40 —we) fi + (5 —2we) fi11)

4 5
x {+(1 - wc)%%mxr" + Wcl—;o%(AX)“ + - } : (16)

where the subscrigt is the index inx direction and w is a weighting factor between
0 (fully biased differences) and 1 (central compact differences). At consecutive subst
of the four-stage Runge—Kutta scheme (Fig. 2), the numerical scheme alternates bet
upwind-biased differences (Eqg. (15)) and downwind-biased differences (Eq. (16)). |
example, when upwind-biased differences are used to comgut, downwind-biased
differences are used to computg f;;; . Since the equations are nonlinear and coupled, th
order of the biasing itself is reversed at every other time step to avoid any undesired ove
biasing.

When the four-stage classical explicit Runge—Kutta scheme is used for the time inte
tion, the biasing factor wis set to a suitable value between 0 and 1. When any other schel
is used for the time integration, the biasing factor is set¢e-\; i.e., the derivatives are
approximated by central compact differences.

The average of the two difference formulae (15) and (16) is the usual central comf
difference formula for the first derivative. However, when used in this split form, the
provide a much better approximation than the usual central difference formula.

First, note that the leading order terms of the truncation error of the two formulae :
equal in magnitude and opposite in sign. Since they are used at consecutive substeps
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FIG. 2. Amplification f(t + At)/f (t) after one Runge—Kutta step, plotted oyekt. (x) first order;((J)

second order(+) third order;(<) fourth order; (—) exact solution

Runge—Kutta scheme, one can write the leading term of the truncation error as
1 94f(t + At
(t+ )( AX)3

194f(t) 4
(A= We) e g (A7 + (1= c)— e
_ 1 9%f (1) 3 1 9%f () 3
== (1= We) g — 7= (AX)" + (1 = We) ze— 7= (AX)
Fa-wo 22T (a30an + oA a2
36 ax4ot
17)

5
f 3
~(1-— — A At).
(1—Wo) = 36 axar A0
Hence, the method is still formally fourth-order accurate. A further understanding of
method can be gained by analyzing its dispersion relation. Consider the model equati
(18)

ot of
2 rus=o0
at TV ax

with periodic boundary conditions ir. One can then apply a Fourier transformxiro

obtain
df .
— +iaUf =0, 19
T (19)

where i=+/—1 anda is the streamwise wavenumber. The solution of this equation af
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one time step\t is

M _ g iaUAt _ goioat (20)
f(t)

wherew is the circular frequency.
The dispersion relation of the exact solution is

—=U, (21)

wherea andw are real numbers. Note that all waves have the same phase speed and
they are neither amplified nor damped. Also, the group velocity of the exact solution

dw
cg=—=U 22
97 da (22)
is independent of the wavenumber.
When Eq. (18) is integrated numerically, i.e., with finite differences and a Runge—
Kutta method irt, the solution will be different. Instead of Eq. (20), we expect a solutiol
of the form

M — g UAL _ gritAt (23)
f(t)
The dispersion relation of the numerical scheme can be written as
(o, CFL)At
———— =qaA 24
CFL anx, (24)
where
U At
CFL= — (25)
AX

is the Courant—Friedrichs—Levy number.

The modified frequencw is now generally complex and depends nonlinearly on th
wavenumber and the CFL number. A positive imaginary @adorresponds to exponential
damping of waves, in contrast to the properties of the exact solution. A negative imagin
partw; corresponds to exponential growth, i.e., to numerical instability.

The weighting factor win Egs. (15) and (16) can be adjusted to provide “optimal’
damping of numerical errors in the sense that grid-mesh oscillations with a wavenum
a =m/AXx are completely eliminated. For a given CFL number, this “optimum” value ¢
w. can be found from

_ CFL—3V24— 192

We CFL

This relation holds so long as the values of CFL andave within the stability limits of
the scheme. The stability boundary Glzk vs W is plotted in Fig. 3. For a given biasing
factor w;, CFL numbers above the curve will lead to numerical instability. Note that strong
biasing, i.e., lower w, will reduce the allowable timestep for a given spatial step.

In Fig. 4 the normalized imaginary part of the modified frequeagyt/CFL, is plotted
vs the normalized wavenumberAx, for several fourth-order accurate schemes: standa
five-point central differences, compact central differences, compact split differences w

(26)
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FIG. 3. Stability boundary CFl.x vs weighting factor w of the fourth-order Runge—Kutta scheme with
split-biased compact differences. The numerical scheme is stable for parameter combinations j@&elow
the curve CFl,a

&AL i m |
CFL :

FIG. 4. Normalized imaginary part of modified frequeneyAt/CFL, plotted vs normalized wavenumber
aAX. Time integration with the fourth-order Runge—Kutta scheme, spatial differentiation with the followi
fourth-order finite-difference schemes®) standard central+) compact central{(]) weighted compact split;
(x) compact split; (—) exact solution.
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FIG. 5. Detail of normalized imaginary part of modified frequeneyAt/CFL, plotted vs normalized
wavenumbew Ax. Time integration with the fourth-order Runge—Kutta scheme, spatial differentiation with the fo
lowing fourth-order finite-difference schem&s>) standard central+) compact centrak[J) weighted compact

split; (x) compact split; (—) exact solution.

w; =0, and weighted compact split differences with=40.2. In each case, the fourth-
order Runge—Kutta scheme is used for time integration. The CFL number in this exampl
CFL=0.5, and the optimal weighting factor according to Eq. (26) is¥0.2. Indeed, the
two curves with split compact differences show strong damping of waves with wavenumb
aAX > 2, i.e., of waves with a resolution of fewer than three points per wavelength.
Figure 5 shows a more detailed view of the previous graph near the ordinate axis. .
parently, the split compact differences cause stronger damping of waves than the ce
differences. With a biasing factor ofow= 0.2, a wave with wavenumberAx =m/2, i.e.,
with four grid points per wavelength and 8 time steps per period, loses 2.4% of its amplitt
over each period. However, at a finer resolution with a wavenumher= 1 (six points per
wavelength, 12 steps per period), a wave loses less than 0.3% of its amplitude per pe
Most importantly, these damping losses can be made arbitrarily small by reducing the C
number, i.e., by reducing the time stép. Note also that the central difference formulae
do not cause any damping at the highest wavenumbers.

The normalized real part of the modified frequeneyAt/CFL, is plotted in Fig. 6.
With standard central differences, the numerical solution is seen to depart from the cor
solution for wavenumberg Ax > 1. It reaches a maximum atAx =1.82 and returns to
zero for higher wavenumbers. This indicates that waves with a resolution of fewer t
six points per wavelength have the wrong phase speed; they lag the correct solution. \
importantly, the group velocity of these underresolved waves reaches zetxat 1.82.
This means thatany numerical error at this wavenumber will not propagate at all. Worst of
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[AAN X
CFL X

FIG. 6. Normalized real part of modified frequenay At/CFL, plotted vs normalized wavenumhenx.
Time integration with the fourth-order Runge—Kutta scheme, spatial differentiation with the following fourth-or
finite-difference scheme$) standard central+) compact central[J) weighted compact spli{;x) compact
split; (—) exact solution.

the group velocity of the least resolved waves is negative; i.e., short-scale numerical e
will actually propagate upstream, with the shortest possible waves, grid-mesh oscille
with « AX = 7, having the absolute largest (negative) group velocity. As shown in Fig.
these spurious waves are not damped at all. Since these properties are inherent in the
finite difference operator, only an increase in the number of spatial grid points can imp
the accuracy of the solution. Thus, increasing the resolution of a physically meanin
wave from four gird points per wavelength to eight grid points per wavelength will clea
improve its accuracy. However, it will not affect any short scale numerical errors that r
be caused by roundoff.

Matters are not much better for the central compact differences. On the positive side
departure from the correct solution and the threshold of zero group velocity occur at hi
wavenumbers, atAx > 1.5 andae AX = 2.07, respectively. On the negative side, the grou
velocity of the shortest waves has a much larger (negative) value than in the case of ce
differences. Again, these waves are not damped.

In contrast, the split compact differences reproduce at least the correct sign of the g
velocity; i.e., they do not cause upstream propagation of numerical errors. And with
“optimal” biasing factor of w=0.2, the phase and group velocities of all waves exce
for grid-mesh oscillations are very close to the correct values. Also, recall that in this
grid-mesh oscillations are completely damped.

In summary, the use of split compact differences can yield enormous improvemen
accuracy over conventional compact (and standard) differences for short waves, i.e
waves with 6 gridpoints per wavelength or less. On the other hand, there is no apprec
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difference between the three methods (standard, compact, split-compact) for long w:
with 10 or more gridpoints per wavelength, for a given CFL number. Since the computatio
effort for all three methods is about equal, the improved short-wave resolution comes a
extra cost.

3.3. y-Derivatives
In the wall-normal directiory an exponential stretching is used to cluster grid points nee
the wall [1, Eq. 5-216]:

B+D—(B— 1)(g—j1)1—<1—1>/<my—1>

541\ 1=(—D/(m,—1)
(571) +1

Y(J) = Ymax (27)

Here j is the index of the grid points in the direction; i.e.,j =1 is at the wall y =0)
and j =my is at the free streanmy(= ymax), While § is a parameter to control the cluster-
ing of grid points.8 — 17 clusters all points at the walg — oo distributes points on an
equidistant grid. It is important to note that the grid stretching used here is not done &
coordinate transformation. Rather, the finite-difference approximations for the derivati
with respect toy are constructed for a nonequidistant grid. While this approach is tediot
it can yield higher accuracy than the traditional method of grid stretching by a coordin:
transformation. Intuitively, this can be seen from the fact that, when a coordinate trans
mation is used, only one parameter (the metric) can be adjusted in a given finite-differe
formula, while the technique used in this work allows the adjustment of all coefficients
the formula. For higher-order formulae with many coefficients, this should give a substan
improvement. This approach has been successfully used in aeroacoustics [11].

For example, the firstf(') and second{”) derivatives in the/-direction at a gridpoinf
away from the boundaries are given by

afdyf_, + bfdyf; + cfdyf/ ; = ardyfi_; + brdyf; + crdyfi 1, (28)
where
3 1 1 3 1
afdy — r(rTJr) dfdy = % cidy = "D (29a)
3 _ 3
ardy= T2 gy CEDOHDT = @D o9
Aj Aj Aj
and

afd2yf/ | + dfd2yf/ + cfd2yf/,, = ard2yf;_; + brd2yf; + brd2yf;,;,  (30)

where
re2—r—1) r+Dr2+3r +1) r’+r—1
fd2y=———— bfd2y = fd2y= ———
atldsy 2 y 12 o0y 12
(31a)
r r+1 1
ard2y= ——, brd2y= ———, crd2y= 31b
VN NVNYE Y= a2 (310)

In these equationd ; =y; — yj_1, andr = (yj11— Yj)/Aj.
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To illustrate the benefits of specially constructed finite-difference approximations, c
sider the function

f(y):cos<10 y ) (32)

max

At y =0, the first derivative isl f/dy= 0. Typical grid parameters for the calculations ir
this work areymax=0.15 andmy = 80. Given the function values on the grid points, on
can numerically calculate the derivative using the finite-difference formula

f, = hrdy, f1 + hrdy, f, + hrdy; f3 + hrdy, f4 + hrdys f5 + hrdy fs, (33)

where
hrdy, = — hohzhshs + hihshahs 4 hihohshs 4+ hihohshs + hihohshy (34a)
hihohshshs
hohshshsg
hrdy, = 34b
Yo hi(hy — hy)(hs — hy)(ha — h1)(hs — hy) (345)
hihshshsg
hrdy, = — 34c
% = ~hyth; — ho)(ha — ho)(hs — ha)(hs — hy) (34c)
h1hshshsg
hrdy, = 34d
Ya hs(hz — hy)(hz — hy)(hs — h3)(hs — h3) (34d)
hihohshsg
hrdy: = — 34e
¥ = Tha(he — hy)(ha — hy)(hg — ha)(hs — o) (348)
hrdy, = hihzhshs (341)

hs(hs — hy)(hs — hy)(hs — h3)(hs — hy)

andhj =y;+1 — y1. In the limiting casey; .1 — yj = Ay =const., Eq. (33) reduces to
fl = 1 (—137f; + 300f, — 300f; + 200f, — 75f5 + 12f¢) 19° (AY)® +

1= 6oAy 1 2 3 4 5 6 6 9y® y .
(35)

Alternatively, one could use Eq. (27) to define a coordinate transformation from
physical coordinaty to a mapped coordinatg where

(36)

such that the grid is equidistant in the mapped coordinate system.Abgrel/(my — 1) =
0.012658. The derivative can then be calculated as

df dndf
=T (37)
dy dydp
where the transformation metric is given by
d 2
n_ B (38)

Y yrax(B2 — (1 - ;% )?)(log(B + 1) — log(8 — 1))
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FIG. 7. Error of the numerical derivativeé/dy of f = cog10y/ymas at the wally =0 with standard differ-
ences, plotted vs stretching paramegie€Calculation with 80 grid pointg+) d f/dy finite-difference derived for
stretched grid(<) d f/dy coordinate transformation with finite difference for equidistant grid; (—) leading term
of truncation error for equidistant grid.

and the finite-difference formula (35) can be used to calculate the derivative Ayith
replaced byAn.

The results are plotted in Fig. 7. The first curve shows the numerical derivative compu
from Eq. (33), plotted over the stretching paramgtefhe second curve shows the numer-
ical derivative computed according to Eq. (37) with the finite-difference coefficients fro
Eq. (35). For large values ¢f, as the grid approaches the limit of equidistant spacing, th
two numerical results converge to an asymptotic limit. This limit is close to the leading tel
of the truncation error of Eq. (35), plotted as a straight line near the bottom of the gra
For smaller values g8, as the grid points become clustered near the wall, the accuracy
both numerical derivatives improves. However, while the error of Eq. (33) goes to zero
desired, the error of Eq. (37) does not. Rather, it oscillates about zero without reaching
proper limit.

To gain higher accuracy at the wall, one could also use a one-sided compact-differe
approximation, such as

qrdy; f; 4+ qrdy, f; + qrdy; f3 +qrdy, f, = prdy; f1 + prdy, f>+ prdy, f3+ prdy, f4, (39)
where

grdy; =1 (40a)
h3h3
(h2 — h)?(hz — hy)?

grdy, = (40b)
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hih3
rdy, = 40c
= (hy —ho2(hg — hp? (40c)
h2h2
rdy, = 12 40d
= (hs — hp2(ng — hy)2 (40d)
2(h2h3 + hihz + hihy)
= — 4
prdyl h1h2h3 ( Oe)
2h2h2(h,hs — 2h;hz — 2h;h 3h?
prdy, = 23(23 1N3 1N + 1) (40f)

hi(hz — h1)3(hs — hy)3

2h2hZ (2h,hs — hyhg — 3h2 + 2hsh,)

= 4
prelys ho(hz — h1)3(hs — hy)3 (409

2h2h2(3hZ — 2h,h; — 2h;hs + h{h
prdy, = —= 2(3n5 2 33 s = hz) (40h)
ha(hz — hy)3(hz — hy)

andhj =Yyj41 — y1.
In the limiting casey;,1 — y; = Ay =const., Eq. (39) reduces to

(3f] +27f, 4+ 2715+ 31))
—i(—nf — 27fy 4 27134 11fy) +ia7—f(A )6+ (41)
= Ay 1 2 3 4 1409y y .

In this case, the derivatives at the poifts 2, 3, 4 are known; thus, the derivative pt=1
can be computed in a straightforward manner without solving a system of equations.
use of a coordinate transformation together with the equidistant formula (41) requires s
care. The derivatives gt=1, 2, 3, 4 must be scaled by the values of the transformatic
metric at these points, i.e.,

d

dn n
3—| f/4+27—
< dy|; ! dy

dn
f,+ 27—
2 2 dy

dn )
f;+3—| f,
33 dY44
1

= (11 = 271 4 271 4 111y), (42)
n

The leading term of the truncation error of Eq. (41) contains an odd derivative. Thus
allow for a comparison of the humerical results with this term, the function used here i

f(y) = sin(lO y ) (43)
ymax

The results of the compact-difference derivatives are plotted in Fig. 8. While the ove
accuracy is two orders of magnitude better than that of the standard one-sided derive
described above, the qualitative trend is the same. For large valdetheferror approaches
the leading term of the truncation error for an equidistant grid. For small valugstbé
error of Eq. (39) approaches zero, while the error of Eq. (42) does not.

These results confirm that, for higher-order differences, it is preferable to derive a fir
difference formula specifically for a stretched grid, rather than to use a coordinate tran:
mation combined with an equidistant grid in computational space.

A full listing of all finite-difference approximations used is beyond the scope of tf
paper. The interested reader is referred to the listing given in [19].
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FIG. 8. Error of the numerical derivative/dy of f = sin(10y/ymax) at the wally =0 with compact differ-
ences, plotted vs stretching parameiteCalculation with 80 grid pointg+) d f/dy finite-difference derived for
stretched grid(<) d f/dy coordinate transformation with finite difference for equidistant grid; (—) leading term
of truncation error for equidistant grid.

3.4. Solution of the Velocity Poisson Equations

After the calculation of the vorticity, the normal velochy is computed. At the outflow
boundary, the second derivativexon the left-hand side of Eq. (10a) is dropped, leaving a
ordinary differential equation fovk. This equation is discretized with compact differences
in y. After solving forV ati = m1, these values are then used as a boundary condition f
the solution inside the integration domain. To solve for the velocity inside the integrati
domain, Eq. (10a) is discretized with compact differences.ifollowing Swarztrauber
[27, 28], a Fourier sine transform is appliedxnThis yields a set of ordinary differential
equations iny for each Fourier sine componentin These equations are then discretizec
with compact differences ig.

The Poisson equations (10b) faf and (10c) folUy are also discretized with compact
differences inx.

3.5. Calculation of the Wall Vorticity

For the calculation of the vorticity at the wall (Egs. (12a) and (12c)), the Laplacisi of
and the mixed derivativeQy, /dxdy are needed at the wall.

The LaplaciariVZV at the wall can be computed from the Poisson equation fowthe
At this stage in the calculation is known everywhere, an¥i2Vi = ykQxk — 922/ X
is known on the grid point$ =2, 3, 4. Thus, Eq. (10a) can be turned around to solve fo
V2V at the wall.



COMPACT-DIFFERENCE SCHEME 389

Since Qyy is zero at the wall, it would be straightforward to compute the derivati
9Qy/0y with one-sided differences, e.g., with Eq. (33). However, by using the comp
differences (39), one can achieve substantially higher accuracy and also ensure a diver
free vorticity vector at the wall. Taking thg-derivative of the divergence of the vorticity
yields

3829yk _ 329;« ” 3sz_ (44)
Xy X X
Thus,32Qyk/3dxdy can be computed on the grid poirjts-= 2, 3, 4 with very high accuracy.
Once the derivatives at these points are known, Eq. (39) can be used to solve for the deri
at the wall.

Whena?Qyy/dxdy and V2V at the wall have been calculate,, can be computed by
solving Eqg. (12a). Finallys2,« is computed by numerical integration of Eq. (12c), startin
at the inflow boundary and marching downstream.

3.6. Damping of Disturbances Near the Outflow Boundary

The buffer domain technique is a very effective method for avoiding reflections of disi
bance waves at the outflow boundary [15, 26]. Betweerxg andX = Xmax, the disturbance
vorticity is gradually ramped down to zero using

F(6) = c® fr ), (45)
where
X — Xmax
F 7 o e o

Here f1 (&) is the vorticity as computed from the vorticity transport equation, before dan
ing, f (¢) isthe vorticity after damping, arai§) is a weighting function that varies smoothly
fromc=1 até =0toc=0 at& = 1. The length of the buffer domain g = Xmax — Xz.
Kloker et al.[15] used a fifth-order polynomial for the weighting functio§) to ensure
smooth first and second derivatives at the beginning and end of the damping,

c(¢) =1—68%+15* — 108, (47)
This function is antisymmetric w.r.t. the midpoint of the buffer domain, i.e.,
c(l/2+s)=1-c(1/2-y9), O<s<1/2 (48)
During the course of the calculation, this damping is performed at every stage of the Rul
Kutta time integration. The effect of applying this damping functidimes can be written
as

f(x) = c"(x) fr (). (49)

In Fig. 9, the functiore" (&) is plotted vst, for n=1, n =50, n= 100, anch = 150. While
c(¢) varies smoothly between 1 and 0, repeated application of the damping causes a
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FIG.9. Effectofapplying the polynomial damping functiot€) = 1 — 6£° + 1554 — 103 ntimes:(O)n=1;
(+) n=50 (O) n =100 (x)n=150

drop atthe beginning of the damping domain, as can be seen from the curves farlaiger

is clearly undesired, as such a sudden jump in the vorticity might act just like a bound:
causing reflections of waves. Sin€é) in Eq. (45) consists of traveling waves, the dropoff
due to repeated damping should be counterbalanced by the downstream propagati
these waves. In practice, the phase speed of waves in a boundary layer is on the order c
third of the free-stream speed. With a typical CFL number of 0.5, a wave travels one spse
stepAx in six time stepsAt. Thus, with the four-stage Runge—Kutta scheme, the dampir
function is applied 24 times for every st&yx a wave advances. The buffer domain extend:
typically over two wavelengths, e.dg =40AXx for a wavelengthh =20AXx. After one
half period of 3A\t, the wave has propagated AR downstream into the buffer domain.
After the damping has been appliee= 120 times, the wave has propagated a distance ¢
& =0.25. As seen from Fig. 9, this distance is not enough to counter the severe attenue
caused by the damping. Indeed, the figures in [15] show a very rapid change of the f
within the first few grid points of the buffer domain.

In some simulations of low-frequency free-stream vortices [20], the buffer domain tec
nigue with the damping function discussed above did not work. Waves were reflected fr
the junction at the upstream end of the buffer domain and destroyed the results in:
the computational domain. Therefore, a new damping function was devised that took
convective nature of the flow into account:

() = e£/10(1 — £50)%, (50)

The constants in Eq. (50) were found through numerical experiments. The new damg



COMPACT-DIFFERENCE SCHEME 391

()

FIG. 10. Effect of applying the exponential damping functia() = exp(—x*/10)(1 — x*%* n times:
(©)n=1; (+)n=50; () n = 100;(x) n=150.

function is plotted in Fig. 10, again for= 1, n =50, n =100, andh = 150. While there is
a steep dropoff near the end foe= 1, the curves for higher values nfare much smoother
than in the previous figure. This damping function has performed very well in calculati
of many different unsteady flows.

However, one purpose of the present code is the calculation of three-dimensional st
flows to be used as base flows for subsequent unsteady calculations. For such flow
normal buffer domain technique of ramping down the disturbance to zero near the out
boundary may not be adequate, due to the elliptic nature of the steady flow. A solutic
this problem is to use a weighted average of fourth-order compact differences and
order upwind differences near the outflow boundary betweerxg and x = Xmax When
calculating thex-derivatives of the nonlinear terms in the vorticity-transport equations (9!
(9c),

of of of
T S RAACL

X 0X  compact X upWind’

(51)

where f = Ay, Ck, and the compact differences are calculated according to the met
given in Section 3.2. The weighting functiai¢) used here is the same as used fc
the direct damping of the vorticity. This technique has worked exceedingly well e\
for very strong streamwise vortices [18], and it has no adverse effects on the flow
stream of the buffer domain. Hence, we have retained it in our code for all ¢
culations.
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3.7. Filtering of the Vorticity in Streamwise Direction

The numerical integration of Eq. (12c) along the wall introduces grid-mesh oscillation
X. When the streamwise derivatives of the nonlinear terms of the vorticity transport equati
are computed by the split-compact differences (15) and (16), any grid-mesh oscillations
sufficiently damped. On the other hand, when the streamwise derivatives of the nonlir
terms are computed with central compact differences, those grid-mesh oscillations 1
grow and cause trouble. To suppress them, the vorticity components are filtered at ¢
stage of the Runge—Kutta time integration. The filter used here is a five-point comp
difference filter proposed by Lele [16, equations (C.2.1) and (C.2.10.b)].

3.8. Time Integration

In our code, two different methods can be used for the time integration of the vortici
transport equations (9a)—(9c). The first is a four-stage explicit Runge—Kutta scheme wil
is very accurate, up to ordér((At)%). The second combines a three-stage explicit Runge
Kutta scheme with a semi-implicit Crank—Nicolson scheme for better numerical stabili
This second scheme is accurate of or@&(At)?).

Four-stage explicit Runge—Kutta methodrhis method is based on the classical fourth-
order Runge—Kutta method. However, the weighting of the intermediate stages in the f
corrector step can be adjusted to increase the numerical stability of the scheme, in re
for reducing its accuracy. The four stages of the integration over one timestep are

At
fi = fo+ > fO/ (52a)
At
fi = fo+ > f/ (52b)
fii = fo+ Atf} (52¢)
At / / / /
f=fiyv="fo+ E(aRK fo + brk T + crk fii + drk fiii), (52d)

where f denotes any vorticity componenit is the time stepf’ is the right-hand side of
the vorticity—transport equations, and the subscript 0 denotes the previous timestep.
weighting coefficients of the final corrector stage are given in Table I. A key feature of tt
family of Runge—Kutta integrators is the fact that all share the same intermediate steps.
allows us to use different orders for different terms of the same partial differential equat
while maintaining consistency of the boundary conditions and of the nonlinear terms.

TABLE |
Coefficients of the Final Corrector Stage
for the Explicit Runge—Kutta Scheme

Order ark brx Crk Orx
(At) 3.60897 2.04000 0.34206 0.00897
(A)? 0.11 3.92 1.86 0.11
(At)® 0.65 2.70 2.00 0.65

(Ap? 1 2 2 1
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As an explicit method, this scheme is only conditionally stable. Many calculations
boundary layer flows require a very fine grid spacingyinear the wall. In these cases,
the major stability restriction for the time step is due to the wall-normal diffusion tert
1/Red?/dy? (k. Qyk, Q1) of the vorticity—transport equations. For a numerical stabilit
analysis, these terms can be modeled by the ordinary differential equation

df
i —pf, (53)
where o is the largest eigenvalue of the finite-difference operator. For this model eq
tion, the stability of a given numerical scheme depends only on the pradiict For
the diffusion operatorp is dominated by its real part. Therefore, the fourth-stage cc
rector can be modified to allow for a larger real part of the eigenvalues, in return
reduced formal accuracy. In Fig. 2 the amplificatib¢t + At)/f (), obtained with the co-
efficients from Table |, after one timestep is plotted vs the proguct, for real p > 0.
The method is stable iff (t + At)/f(t)] <1. These curves show that the lower-orde
schemes are much more stable than the fourth-order scheme. In practice, the se
order scheme is sufficiently accurate, while allowing for a timestep that is much lar
than that allowed by the standard fourth-order scheme. The first-order scheme is u
for the calculation of steady flows, but is too dissipative for genuinely unsteady cal
lations. Hence, the wall-normal diffusion terms, which are most critical for stability,
integrated with the second-order scheme. All other terms are integrated with the fourth-c
scheme.

At each Runge—Kutta stage, the calculation proceeds as follows:

1. Compute the right-hand side of the vorticity—transport equations (9a)—(9c). S
compact differences with biasing are used to compute the streamwise deriva
dA/0x anddCy /.

2. Integrate the vorticity-transport equations over one substep, according to Eqgs. (5

(52d).

If desired, taper the disturbance vorticity to zero near the outflow boundary.

If desired, filter the vorticity in the streamwise direction.

Solve the velocity—Poisson equations (10a)—(10c).

Solve Egs. (12a) and (12c) to obtain the vorticity compon@ris 2, at the wall.

o0k w

Three-stage Runge—Kutta/Crank—Nicolson methdthr some calculations, the explicit
schemes described above are still too restrictive; i.e., the maximum timestep allowe
numerical stability is much smaller than the time step necessary for numerical accu
In these cases, an implicit time integration scheme would be preferable, at least fo
diffusion terms in they direction. This raises the problem of boundary conditions: Tt
implicit time integration of the wall-normal diffusion termgRed?/dy?(Q2xx, Qyk, 27k
requires the specification of the vorticity at the wall, which is not known before the solut
ofthe velocity—Poisson equations. This issue appears to be a major drawback of any vor
formulation of the Navier—Stokes equations.

One way to deal with wall boundary conditions for an implicit scheme is to use
influence matrix method, similar to those proposed for the primitive variable fractiol
step method [14, 21]. This is equivalent to the numerical calculation of a Green'’s funct
Unfortunately, the memory requirements of such an approach are very high.
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An alternative approach is to iterate between the vorticity—transport equations and
elliptic equations (normal velocity and wall vorticity) until the vorticity at the wall has con
verged. This approach has been applied to the two-dimensional vorticity transport equat
by Fasel, although in the context of a completely implicit scheme. In the present work,
implicit Crank—Nicolson scheme is used for the time integration ofytluffusion terms
only. All other terms of the vorticity—transport equations are integrated with an expli
three-stage Runge—Kutta scheme. The vorticity at the wall is computed by an iteration
tween the implicit part of the vorticity—transport equations and the Poisson equation for
normal velocityVk. It is important to note that the iteration of the implicit wall-boundary
conditions here is only necessary to improve the numerical stability of the scheme
does not affect the accuracy. This is in contrast to the fractional step method in primit
variables, where the problem of wall boundary conditions is a lack of accuracy and noi
numerical stability.

The three stages of the Runge—Kutta scheme are

fi = fo+ At fé (54a)

fi = fo+ Atf/ (54b)
At

fi = fo+ 7(&; + fi). (54c)

The equations for the Crank—Nicolson scheme at a grid point away from the bounda
are

2 Re

(ﬂardZy — afd2y> fn
i

At

-1

At
+ <mcrd2y — cfd2y) fn

j+1

2 Re

A
= —<—tard2y + afd2y> fo
]

At
— (mbrdZy + bfd2y> fo

j—1

At
_ <_crd2y + cdey) fo — At(afd2yrhg_4|j-1
2 Re j+1

+ bfd2yrhs,_,|j + cfd2yrhs,_,]j+1), (55)

where f denotes any vorticity componerijtjs the grid index in they direction, At is the
time step, Re is the Reynolds number, and rhs, is the explicit part of the vorticity transg
equation without they diffusion terms. The subscript refers to the stagg ii, iii of the
Runge—Kutta scheme, and the subscript O denotes the previous timestep. The coeffic
ard2y, brd2y, crd2y, afd2y, bfd2y, cfd2y at the gridpaijrare given by Eqgs. (31a) and (31b)
in Section 3.3.

At each stage of the Runge—Kutta scheme (54a)—(54c), the calculation proceeds a:
lows:

1. Compute the explicit right-hand side terms rhs of the vorticity—transport equ
tions (9a)—(9c), excluding the wall-normal diffusion termi&ea2/9y?(Qxk, Qyk.
QK. Here, central compact differences (without biasing) are used for the strea
wise derivatives Ax/9x anddCy/aX.
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2. Compute the explicit wall-normal diffusion termsy, =1/Red?/dy?(Qx«,
ka, Qz1) (Cf Eqg. (30))

3. Using the explicit right-hand sid& =rhs+ wyy, advance the vorticity in time, ac-
cording to Egs. (54a)—(54c). These vorticity values are used to start the iteratic
step 4.

4. Compute the wall-normal diffusion terms implicitly with the Crank—Nicolso
scheme. The following iteration is used to compute the vorticity at the wall:

(a) Using the previous vorticity values inside the domain, solve\frePoisson
equation (10a).

(b) Solve Egs. (12a) and (12c) to obtain the vorticity compon&its Q2 at the
wall.

(c) Using the wall vorticity values (after underrelaxation, see below) as bound
conditions, calculate the new vorticity values inside, using Eg. (55).

5. If desired, taper the disturbance vorticity to zero near the outflow boundary.

6. If desired, filter the vorticity in the streamwise direction.

7. Solve the velocity—Poisson equations (10a)—(10c).

8. Solve Egs. (12a) and (12c) to obtain the vorticity compon@gis 2,k at the wall.

For the iteration of the Crank—Nicolson scheme to converge, an underrelaxation mu
used to update the vorticity. The vorticity valugg; used in step 4c above are relaxed as
-1

- | fn,l
1 max — 1

|max_|

fn (56a)

fn,Ifl

1 Imax— 1 1

1
+ - 1:n,l—l

fi : (56b)

J

1
= 5 fn.I

J
wherej is the wall-normal grid point indexy is the stage of the Runge—Kutta scheine,
is the iteration level, anti is the total number of iterations. Note the gradual change
the relaxation factor for the wall vorticity in Eqg. (56a). Of the many different relaxatic
schemes tested, this scheme proved to be the fastest and most robust one. In practi
iterations are sufficient for convergence.

4. CODE VALIDATION

In this section, we present the results of several numerical calculations that demons
the accuracy and convergence of the numerical scheme. The best way to assess the ac
of a numerical method is to compute a flow for which there is a known exact solution.
comparing the error from calculations for different stepsizes, one can calculate the fo
accuracy of the overall method, as opposed to the formal accuracy of individual fin
difference approximation of different terms in the equations. Suppose the numerical ¢
is dominated by the leading term of the truncation error of a Taylor series, i.e.,

& = Trumericai— fexact= cm P = CAp, (57)

wherec is a constantm is the number of step&, and p is the accuracy of the numerical
scheme irx, y, ort, respectively. Using Eq. (57) for two numerical solutions with differer
resolutionsm; andmy, yields the accuracp as

log(e1/e2)

log(my/my) (58)
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Unfortunately, there are not many exact solutions of the Navier—Stokes equations suit
for such an accuracy analysis of the present code. However, even without an exact solu
it is still possible to estimate the convergence rate of the numerical scheme from Eq. (
In this case, we require three numerical solutidpsf;, and f, with different resolutions
mp, My, andm, to obtain an equation fop,

(f1 = fo) ((Mo/mp)P — 1) = (f2 — fo) ((Mo/my)P — 1). (59)

This equation must be solved numerically. In practigés usually a nonintegral number,
and the formal accuracy is considered to be its integral part. Qiaedc) are known, one
can use Richardson extrapolation to obtain an estimate for the truncatiooA&fand for
the asymptotic solution as — 0.

4.1. Asymptotic Suction Flow

One exact solution suitable for a validation of our numerical method is the asymptc
solution of a flow over a flat plate with zero pressure gradient and with uniform wall sucti
vs < 0. In the present nondimensional variables, this solution of the Navier—Stokes equa
is

u(y) = 1— e Rey (60a)
V= vg (60b)
w, = —vs Ree™ ReY, (60c)

This flow is of particular relevance, because the study of wall suction in laminar flow ca
trol is an important application for our Navier—Stokes code. To determine the accuracy
the numerical method, we compared the values of the wall vorticity from the two differe
calculations to the exact solution and used Eq. (58) to compute the convergence rate.
computational parameters used in the calculations and the results are given in Tabl
These results show that the overall code is indeed fourth-order accurateyinlitteetion,
even on a highly stretched grid.

4.2. Tollmien—Schlichting Waves
Inthistest, the Navier—Stokes code was used to compute the propagation and amplific:

of TS-waves in a Blasius boundary layer. At the inflow boundary, time-harmonic bound:

TABLE Il
Computational Parameters and Results
for Asymptotic Suction Flow

Reynolds number Re 10°
Suction velocity ve=—-2x 1073
Wall vorticity w,(y=0) =200 (exact solution)
Free-stream boundary Ymax= 0.15
Grid stretching parameter 8=1.02
Number ofy-gridpoints my, =40 (case 1)
my, =80 (case 2)
Numerical error &, =—1.589354x 1072 (case 1)

g2 =—0.093644x 1072 (case 2)

Convergence rate p=41
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TABLE 11l
Computational Parameters Used in All TS-Wave Calculations

Inflow location Xo=16
Begin of buffer domain Xg =57
Reynolds number Re 10°
Free-stream boundary Ymax= 0.15
Grid stretching parameter B =102
Number ofy gridpoints m, =80

Number of spanwise Fourier modes K =2
Fundamental spanwise wavenumber y; =30
Frequency of the TS-waves F=2rfv/U2 x10¢=1
Inflow amplitudes of the TS-waves 0,_p =0.364529x 107* (2-D wave)
03 p =0.871989x 10~* (3-D wave,y = 30)

conditions were specified that corresponded to a superposition of one plane (2-D) TS~
and one oblique (3-D) TS-wave. The computational parameters common to all TS-v
calculations presented here are given in Table Ill. All spatial dimensions are scalet
the reference length =0.1 M, and all velocities are scaled by the free-stream veloci
U, =15 m/s. With these flow parameters, both TS-waves are initially damped after t
enter the integration domain. They subsequently pass through both branches of the n
stability curve and are damped again before they reach the buffer domain. Their amplit
(maxima ofll overy at eachx-location) are plotted in Fig. 11. The wavelength of the 2-I
TS-wave near the maximum amplitude is abbg~ 0.22.

With this basic configuration, several calculations were performed, using different
sizesAx and At, different time integration schemes, different biasing factors in the spl
compact differences for the nonlinear terms, and different buffer domains leggihsl
weighting functions. The grid spacing in tlyedirection was not changed in this test. The
parameters of these different calculations are listed in Table IV. In this table, exp refers t
exponential damping function in Eq. (50), poly refers to the polynomial damping functior
Eq. (47), RKCN denotes the three-stage Runge—Kutta/Crank—Nicolson method, and R
denotes the four-stage Runge—Kutta method with second-order accuracyydalitfusion
terms.

An issue of considerable importance is the measure of the error in these calculations
ditionally, inlinear stability theory as applied to TS-waves, the amplificatioruatas been
used to compare different prediction methods. Howeygeis only a local measure of am-
plitude growth and does not provide information about the global development of the wa
and hence aboutthe total error. In this study, we have chosen to use the maxampfitude
attained by the TS-waves as the quantity for comparison. This measure includes bot
error due to the numerical treatment of the inflow boundary and the cumulative error fi
the propagation of the waves over 7 (3-D) and 16 (2-D) wavelengths, respectively. He
it is a better measure of the global error than, say, the maximum value of the growth rz

The numerical results are given in Table V. In addition to the results from the individ
calculations, we also include the results obtained by using Richardson extrapolatiol
AX, At — 0. These results are labeled “extrap.” The formal accuracy of the scheme in
x direction was computed from the amplitudes of test cases X1 and X2. In spite of u:
formally fourth-order accurate difference approximations forxatlerivatives, the over-
all code is only third-order accurate ixx. This is due to the fact that the right-hand side
of the velocity equations (10a)—(10c) and of the wall vorticity equations (12a), (12c) con
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TABLE IV
Computational Parameters for Different TS-Wave Calculations

Case AX/AXo We Iy c(§) At/ Aty Time integration
REF 1 1.0 0.95 exp 1 RKCN
X1 2 1.0 0.95 exp 1 RKCN
X2 3 1.0 0.95 exp 1 RKCN
T1 1 1.0 0.95 exp m RKCN
T2 1 1.0 0.95 exp 2 RKCN
Sl 3 1.0 0.95 exp A2 RKCN
SC 3 1.0 0.95 exp /2 RK4-2
SM 3 0.5 0.95 exp 2 RK4-2
SS 3 0.0 0.95 exp /2 RK4-2
E35 1 1.0 0.35 exp 1 RKCN
E25 1 1.0 0.25 exp 1 RKCN
E15 1 1.0 0.15 exp 1 RKCN
P35 1 1.0 0.35 poly 1 RKCN
P25 1 1.0 0.25 poly 1 RKCN
P15 1 1.0 0.15 poly 1 RKCN

Note.AX, = 0.01 (approx. 22 points/wavelengtiyf, = 3.927 x 102 (160 timesteps/period).

x10~4

2.0 LML L L L L B L LY B S L

0 TN TR N YT TS I YT S T T T T T N T T T YN Y Y 2

1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 55 6.0
z

FIG. 11. u-amplitudes of 2-D[(J) and 3-D €) TS-waves.
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TABLE V
Results of Different TS-Wave Calculations

Umax2-b Umax3-D CPU
Case (x10™%) P2-b (x10™%) Ps-b (x10°%s)

REF 1.96657 0.99517 49
X1 2.08851 3.3 1.01854 3.8 39
X2 2.47288 111131 37

Tl 1.96037 24 0.99351 24 49
T2 1.93995 0.98805 49

extrap 1.9756 0.9950

Sl 2.49878 1.13006 37

SC 2.49995 1.13026 26
SM 2.29489 1.09104 26

SS 1.83418 0.99344 26

Note.CPU time inus/gridpoint/timestep.

x-derivatives of the vorticity, which reduces the overall accuracy by one order. The resul
test cases T1 and T2 show that the semi-implicit three-stage Runge—Kutta/Crank—Nic
method is indeed second-order accuratainThe convergence tests farx and At were
performed with central differences for the nonlinear terms, without splitting (ie= #.
These tests show that lower resolutiort iresults in an underprediction of the disturbanc
growth, while lower resoltution i tends to overpredict it.

The effect of splitting was investigated in test cases SC, SM, and SS. Since the effe
the splitting are most pronounced for poorly resolved waves, we have selected a resol
of approximately 7 points per wavelength for these three cases. One would not use sl
poor resolution for a practical TS-wave calculation. However, in a large-eddy simulat
of the later stages of transition and early turbulence, large-scale structures might
contain considerable energy at such short wavelengths. Thus, this test is indicative c
improvements that can be expected from the split differences for such calculations.

In these three test cases, the explicit four-stage Runge—Kutta method was used fol
integration, with second-order accurate integration of the y diffusion terms. Since
method is less stable than the combined Runge—Kutta/Crank—Nicolson method, the tim
had to be reduced relative to the reference case. Thus, for comparison, the calculati
was performed with the combined Runge—Kutta/Crank—Nicolson and with the redu
timestep. We note that the amplitudes in case SlI, with redidedre increased relative to
the case X2. This agrees with the previous observation that lower resolutisasalts in
an underprediction of the amplitude; this effect is apparently more pronounced wher
x-resolution is low. Table V shows that the change due to the smaller timestep is an ¢
of magnitude smaller than the change due to the different splitting factorehe effect of
the splitting is indeed profound. In both cases SM and SS, the amplitude error is red
by about 50%, for both the 2-D wave and the 3-D wave. Note also that the error chat
sign as we go from w= 0.5 (SM) to w. = 0 (SS); thus, careful tuning of the splitting might
lead to even further accuracy improvements.

The last column in Table V lists the CPU time (irs/gridpoint/timestep) used for the
individual calculations. These times were obtained with the code running on a sir
90-MHz R8000 processor on an SGI Power challenge. A comparison between the cas
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and SC shows that the semi-implicit Runge—Kutta/Crank—Nicolson method RKCN requi
about 50% more CPU time per timestep than the explicit four-stage Runge—Kutta met
RK4-2. This is the penalty for the extra computational effort of the iteration. However, f
the computational grid used in this study, RKCN is much more stable than RK4-2. T
stability limit for RKCN is about 80 timesteps per period of the TS-waves, while RK4-
needs about 240 timesteps per period. Thus, if we use the maximum timestep allowe
numerical stability, RKCN needs about half the CPU time of RK4-2, a considerable savin
Also, note that the results with 80 timesteps per period (case T2) are within 2% of the re
estimated by Richardson extrapolation. Such accuracy is probably more than sufficier
most cases.

Finally, we investigated the effect of different damping functions and buffer doma
lengthd g relative to the TS-wavelengitys. Figure 12 shows the-amplituded of the 2-D
TS-wave for seven different buffer domain parameters: The reference case was comp
with avery long buffer domaifig ~ 4A1s), using the exponential weighting function (50). In
cases E15, E25, and E35 the exponential weighting function was used with a buffer don

x107*

2.0

1.8

1.6

1.4

FIG. 12. Effect of different buffer domain lengthg and damping functions(¢) on the amplitude of the 2-D
TS-wave. Damping begins &g =5.7. The curves are reference case Wigh=0.95 (---); polynomial damping
withlg =0.35(), Ig =0.25(<), and g = 0.15(V); and exponential damping with = 0.35(H), | = 0.25(#),
andlg =0.15(V).
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x107°
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FIG. 13. Difference between calculations with short buffer domains and reference case. The curves
polynomial damping withg = 0.35(J), |3 =0.25(<), andlg = 0.15(V); and exponential damping witly =
0.35(M), 1z =0.25(#) andlg =0.15(V).

length of 0.15, 0.25, and 0.35, respectively. In cases P15, P25, and P35 the polync
damping function (47) was used, again with a buffer domain length of 0.15, 0.25, and C
respectively. The differendg— Gyt between the different E and P cases and the referer
case is plotted in Fig. 13. These curves clearly show the dramatic improvement du
the exponential damping function. Even with a buffer length that is substantially sma
than the TS-wavelength (case E15), upstream effects on the amplitude are no largel
1% of the maximum amplitude, and they decay rapidlyXet Xg. On the other hand, the
polynomial damping function causes distortions that extend up to one wavelength upst
of the buffer domain. Thus, the exponential damping allows for a reduction in the lengtl
the buffer domain of up to two wavelengths. For turbulence simulations that include on
few wavelengths in streamwise direction, this can amount to a substantial reduction i
computational effort.

5. CONCLUSIONS

We have presented a new numerical method for solving the incompressible, unst
Navier—Stokes equations in vorticity—velocity formulation. The method is highly suited
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simulations of transition and turbulence in wall-bounded shear flows. It combines seve
new numerical techniques that were discussed in detail. The discretization of the conve
terms with split-compact differences and the use of nonequidistant compact difference
the wall-normal direction considerably improved the overall accuracy of the numeric
scheme. A new exponential damping function leads to a more efficient implementatior
the buffer domain technique to prevent reflections of waves at the outflow boundary
new iteration scheme for the calculation of the wall vorticity allowed for a semi-implic
time integration of the wall-normal diffusion terms. This resulted in substantially increas
numerical stability of the scheme.

It should be emphasized that these new techniques are not restricted to the Navier—St
equationsin vorticity—transport form. The split-compact differences and the improved bu
domain technique are well suited for wave propagation problems in many areas of ma
matical physics. The nonequidistant compact differences provide substantial improven
over conventional high-order finite differences for problems with boundary layer char:
teristics that require highly stretched grids.

The numerical code has been used in direct numerical simulations of laminar flow con
and transition in boundary layers [18, 20] and wall jets [30]. With the addition of an ed
viscosity to model the subgrid scale Reynolds stresses, it has been used to carry out ;
eddy simulations of boundary layers and wall jets [2]. It has recently been extendec
non-Cartesian coordinates for flows over curved surfaces [31].
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